
SmallBasic Physics Extension

 Page 1

Guide for Small Basic Physics Extension

 Summary Overview
This extension uses Box2D (http://box2d.org) as an engine and provides an interface between it

and the graphics capabilities of Small Basic.

An older C# port of Box2D and not the current main feature release (C++) version was used for

various technical compatibility reasons, namely earlier versions of Small Basic that targeted .Net

3.5 SP1 and ‘AnyCPU’ platform. However, the port being used for this extension behaves well,

with only small modifications.

Shapes and Bodies

The engine calculates the interaction collisions of bodies (or Small Basic shapes) in the presence

of gravity. The bodies considered are circles or polygons (rectangles and triangles) and may

correspond to any of the Small Basic shapes with these underlying types.

Small Basic Shape Corresponding Physics Engine Body

Shapes.AddRectangle
Shapes.AddText
Shapes.AddImage †

Polygon (4 points)

Shapes.AddEllipse Circle

Shapes.AddTriangle Polygon (3 points)

† Image shapes can be treated as circles by setting the property LoadImagesAsCircles to "True"

before loading the images. Also, the Controls objects TextBox and Button can be used, and are

treated as rectangles.

Additionally, the FC (or other) extension shapes and controls can be used and are treated by

default as rectangles. An exception is the FCControls.AddPolygon or LDShapes.AddPolygon

which creates a polygon that is also supported by this extension as long as the polygon is convex.

http://box2d.org/

SmallBasic Physics Extension

 Page 2

There is no support for lines; use a thin rectangle.

The boundary of any shape is that before any zoom transformation using Shapes.Zoom is made,

so it is best not to use the Small Basic zoom feature in conjunction with this extension.

In addition to these basic shape types, ropes and chains have been implemented for the

extension; these are merely linked rectangles or circles that can rotate about each other, but

maintain a fixed distance between each link in the rope or chain.

Any shape within the physics engine can either be fixed or moving. Both interact with moving

objects, but the fixed ones don’t move (i.e. they don’t see gravity or other forces and effectively

have infinite mass).

When a Small Basic shape is added to the physics engine, its initial position (centre of mass)

within the GraphicsWindow is taken to be its current location. Therefore, to create a shape and

add it to the physics engine you must follow these steps:

 Create the shape using one of the Small Basic Shapes.Add… methods.

 Position the shape using Shapes.Move.

 Add the shape to the physics engine using one of the LDPhysics.Add… methods.

Alternatively, the following procedure may be used:

 Create the shape using one of the Small Basic Shapes.Add… methods.

 Add the shape to the physics engine using one of the LDPhysics.Add… methods.

 Position the shape centre using LDPhysics.SetPosition.

Physical Properties

Gravity is set to be vertically down on the screen.

Solid borders, where all shapes will bounce, are initially set on all sides of the GraphicsWindow.

These can be altered using the LDPhysics.SetBoundaries method.

Any shape or body in the engine will have numerous properties; here is a list of the main ones

that this extension can interact with.

Body Property Comment

Time The time interval used is the second, the default time-step is 0.025 or 40th of
a second

Pixel Equivalent to 0.1m

Position The centre of the body in Small Basic coordinates (pixels).

Angle The angle of rotation (degrees)

Velocity Linear velocity at the body centre (pixel/s)

Rotation The rotation speed of the body (degrees/s)

Impulse An instantaneous kick that may be applied to a body (mass.pixel/s)

Force A force (mass times acceleration) applied to a body (mass.pixel/s2)

Torque A rotational force (inertia * rotational acceleration) that may be applied to a
body (mass.pixel2/s2)

Friction Slowing of the body when it rolls or slides over another body (0 to 1 or larger)

Restitution The bounciness of the body when it collides with another (0 to 1)

Density The density of the body (default 1 good for most cases) (kg/m2 or
0.01kg/pixel2)

SmallBasic Physics Extension

 Page 3

Mass The mass of a body (kg)

Inertia Resistance to rotation depends on shape and mass of body (mass.pixel2)

Attaching and Grouping

Bodies can be attached to each other using the AttachShapes method, for example a block

attached to the bottom of a rope, or any shape to another.

When two bodies are attached, their relative separation and rotation are both restricted and they

appear to move as one object. It is also possible to attach objects maintaining their relative

separation, but allow rotation of the objects using the method AttachShapesWithRotation, thus

allowing the bodies to rotate (for example a wheel).

Shapes can also be permanently ‘glued’ together to make compound bodies using the method

GroupShapes.

The position of a shape (SetPosition and GetPosition) is its centre of mass for all shapes unless

they are connected with the GroupShapes method; in which case the reported position is that of

the shape to which others are grouped (second argument of the GroupShapes method), while the

centre of rotation is the centre of mass of the compound body.

It can sometimes be useful to create transparent shapes that are used in a structure, but you

don’t want to see; in this case just use the Small Basic method Shapes.SetOpacity.

To attach one end of a rope or chain to another body, the idea of anchors has been added. These

are small transparent bodies, which may be either fixed or moving like any other body.

Note that the first shape is added to the second. In the case of GroupShapes the new compound

shape is the second shape and in the case of the AttachShapes methods the main body is the

second, with the first being added to it. For example think of grouping a car door to the car or

attaching a wheel to the car, not the car to the wheel. This will help considerably with overall

stability of compound structures.

The Game Loop

Once the bodies are defined, the physics engine will update their position, rotation etc. at each

time-step. The physics extension also updates the graphical display of the shapes as they move

and rotate in the Small Basic GraphicsWindow. A time-step is called using the method

LDPhysics.DoTimestep. This will generally be repeatedly called in a loop (called the ‘main game

loop’).

While ("True")
 LDPhysics.DoTimestep()
 Program.Delay(20)
EndWhile

The ‘game loop’ concept is common to all dynamic interaction type software and worth using

from the start.

Other game-play interactions are made inside this game loop, such as moving barriers, firing

bullets, adding or removing bodies etc.

SmallBasic Physics Extension

 Page 4

Beyond Small Basic

Use the examples listed below – they are more than just a random set of things that can be done;

but demonstrate important features and concepts. There is also lots of web documentation on 2D

Physics, simulation and Box2D in particular if you fancy using it directly, or just understanding

how to build models since the Small Basic extension interface pretty much follows what Box2D

can do.

There are loads of small web based physics programs, many using Box2D ports to JAVA or Flash,

which could be the next step once you have the concepts of setting up and interacting with the

physics engine.

 Additional Comments
Only shapes that are connected to the physics engine take part in the motion physics, for

example you may add normal shapes (e.g. a gun and not connect it to the physics engine). Once

a shape is connected to the engine, it is best to only interact with it through the methods

provided by the extension. All positions are in the Small Basic GraphicsWindow pixels and refer

to shape centres.

Tunnelling and Stability

One issue that Box2D has difficulty with is small fast moving objects that can 'tunnel' through

other shapes without being deflected (see the SetBullet option).

Another problem is shapes of very different size and hence mass, especially large shapes when

they are connected together. It may be necessary to reduce the density of large bodies or

increase the density of small bodies. Generally the default density of 1 is good. Resist the

temptation to connect too many shapes together.

The author of Box2D (Erin Catto) states the limitations very clearly:

 Stacking heavy bodies on top of much lighter bodies is not stable. Stability degrades as the mass

ratio passes 10:1.

 Chains of bodies connected by joints may stretch if a lighter body is supporting a heavier body.

o For example, a wrecking ball connected to a chain of light weight bodies may not be stable.

o Stability degrades as the mass ratio passes 10:1.

 There is typically around 0.5cm of slop in shape versus shape collision.

 Continuous collision does not handle joints. So you may see joint stretching on fast moving objects.

It may be possible to improve the stability of some 'difficult' models using the TimestepControl

settings, but the defaults look good for most cases. It is often better to consider reducing mass

and size variation between shapes. Again, Erin states:

“Box2D uses a computational algorithm called an integrator. Integrators simulate the physics

equations at discrete points of time. This goes along with the traditional game loop where we

essentially have a flip book of movement on the screen. So we need to pick a time step for Box2D.

Generally physics engines for games like a time step at least as fast as 60Hz or 1/60 seconds. You

can get away with larger time steps, but you will have to be more careful about setting up the

definitions for your world. We also don't like the time step to change much. A variable time step

produces variable results, which makes it difficult to debug. So don't tie the time step to your

frame rate (unless you really, really have to).

SmallBasic Physics Extension

 Page 5

In addition to the integrator, Box2D also uses a larger bit of code called a constraint solver. The

constraint solver solves all the constraints in the simulation, one at a time. A single constraint can

be solved perfectly. However, when we solve one constraint, we slightly disrupt other constraints.

To get a good solution, we need to iterate over all constraints a number of times.

There are two phases in the constraint solver: a velocity phase and a position phase. In the

velocity phase the solver computes the impulses necessary for the bodies to move correctly. In the

position phase the solver adjusts the positions of the bodies to reduce overlap and joint

detachment. Each phase has its own iteration count. In addition, the position phase may exit

iterations early if the errors are small.”

Events and Teleporting

Do not call the physics methods inside Small Basic event subroutines directly, rather set flags that

can be processed in a main game loop, since the event subroutines in Small Basic are performed

on separate threads and may try to update variables while the physics engine is in the middle of

its calculations, resulting in unpredictable results or a crash.

Debugging what is happening can often be achieved by increasing the delay used inside the ‘game

loop’ to slow the motion, and using TextWindow.WriteLine.

If you move an object using SetPosition, then the next time DoTimestep is called the object will

be instantly in its new position (teleported) and interact from there. There will be no

interactions with any bodies it ‘passes through’ or touches before and after its position was

manually changed.

The Universe AABB

The engine ‘universe’ is bounded by an AABB (axis aligned bounding box). Anything inside this

region takes part in the physics and anything outside it is considered frozen or dead and takes no

part in any calculations.

Initially this region is (-100,200) in both the X and Y directions. Since these are internal units of

m, they correspond to (-1000,2000) pixels and represents a region larger than any likely window.

Additionally, the edges of the GraphicsWindow are defaulted to be solid so that all shapes bounce

on the window sides and cannot penetrate beyond the visible window area.

So why is this even worth mentioning? You may want physics to continue being calculated outside

the visible window, for example a scrolling platform type game where the player may move off to

the right, but you still want activity on the left that gets scrolled off-screen to continue. To

achieve this you will need to remove some boundaries using the SetBoundaries method.

Consider the PanView option to scroll a view, perhaps to keep a moving player sprite central. All

frozen shapes can be removed using the RemoveFrozen method. You may also want to increase

the size of the AABB using SetAABB; this must be done at the beginning, calling a Reset

immediately afterwards.

Fixture Types

There are several ways a Small Basic shape may be added to the physics engine. The shapes may

move or not (anchors), rotate or not or even have some special characteristics. Some of these

behaviours may be modified after the shape is added.

Below are a set of tables listing the LDPhysics methods by group with some basic comments.

SmallBasic Physics Extension

 Page 6

Fixture Types Methods Visible Interacts Can Move Can Rotate

FixedAnchor AddFixedAnchor x

MovingAnchor AddMovingAnchor x x x

FixedShape AddFixedShape x x

MovingShape AddMovingShape x x x x

InactiveShape AddInactiveShape x

Secondary
Fixtures

Methods Comments

Chain AddChain
RemoveChain
ChainColour

Connects a chain between 2 existing shapes

Rope AddRope
RemoveRope
RopeColour

Connects a rope between 2 existing shapes

Explosion AddExplosion Temporarily add a large number of invisible shapes moving fast
away from explosion center

Fixture
Modifiers

Methods Comments

Bullet SetBullet
UnsetBullet

Prevents small fast moving shapes from ‘tunnelling’

Tire SetTire
MoveTire
TurnTire
BrakeTire
GetTireProperties
SetTireProperties
GetTireInformation

A shape can be controlled in a ‘top-down’ zero gravity
environment

Change Type ToggleMoving
ToggleRotation
ToggleSensor

Modify a shape to allow moving or rotation

Fixture Removal Methods Comments

Remove RemoveShape Remove a shape completely

Disconnect DisconnectShape Remove a shape from interacting, while leaving it visible

Frozen RemoveFrozen Remove shapes outside the interaction region AABB

Fixture
Connections

Methods Comments

Attach AttachShapes
AttachShapesWithRotation
DetachShapes

Connect shapes to move together, but allow
some independent interaction

SmallBasic Physics Extension

 Page 7

Group GroupShapes
UngroupShapes

Connect shapes solidly, as one new shape

Joints AttachShapesWithJoint
SetJointMotor
DetachJoint

Connect shapes with a variety of joint types

Fixture Control Methods Comments

Get Properties GetAllShapesAt
GetAngle
GetCollisions
GetContacts
GetInertia
GetMass
GetPosition
GetRotation
GetShapeAt
GetVelocity
RayCast

Get shape properties

Setup Properties SetAngle
SetDamping
SetGroup
SetPosition
SetRotation
SetVelocity

Set shape properties recommended during setup

Simulation
Properties

SetForce
SetImpulse
SetTorque

Set shape properties recommended during simulation while
time stepping

Sleeping WakeAll Wake all sleeping shapes

World Methods Comments

Creation SetAABB
SetBoundaries
Scaling
Help
ReadJson
WriteJson

Set the world geometry and pixel/m scaling

Remove Reset Delete everything and return to default settings

Gravity SetGravity
SetShapeGravity

Set the world gravity

Timestep TimeStep
TimestepControl
PositionIterations
VelocityIterations
VelocityThreshold
DoTimestep

Control numerical aspects of the time step calculations

Fixtures LoadImagesAsCircles
MaxPolygonVertices
MaxProxies

Control aspects of shapes that can be added

Control PanView
FollowShapeX
FollowShapeY

Scroll the world and pan with shapes as they move

SmallBasic Physics Extension

 Page 8

BoxShape
GetPan

SmallBasic Physics Extension

 Page 9

 Note on Units
Since this is a physics extension I have made some effort to honour the rigor in Box2D and stick to

consistent units so that position, velocity, acceleration and rotation are consistent with the mass,

inertia and applied forces and torques in the Small Basic units.

This keeps the physics right, but the units can be ignored and just use values for force and torque

etc. that work in the context of your model.

The underlying Box2D units are not appropriate to the pixel units used in Small Basic, so a

conversion factor 10 (pixels/m) was applied, while maintaining the Box2D time unit of seconds. 1

pixel corresponds to 0.1m in Box2D internal units. Therefore the unit of acceleration due to

gravity (10m/s2) is 100 pixel/s2.

To use the Force, Impulse and Torque it is easiest to use the Mass and Moment of Inertia that can

be obtained for shapes.

Density is set to be in units of kg/m2. Thus, a square shape with sides 10 * 10 pixels will have

area of 100 pixel2 and therefore internal area of 1 m2 and therefore a mass of 1 kg using the

default density of 1 kg/m2.

 Force = Mass x Acceleration

 Impulse = Force x Time

 Torque = Moment of inertia x Angular acceleration (radians/s2)

Therefore:

LDPhysics.SetForce(shape,0,-LDPhysics.GetMass(shape))
LDPhysics.SetImpulse(shape,0,-LDPhysics.GetMass(shape)/LDPhysics.TimeStep)

Either of the above commands will accelerate the shape upwards at a rate of 1 pixel/s2.

LDPhysics.SetTorque(shape,LDPhysics.GetInertia(shape))

The above command will apply a rotational acceleration to the shape clockwise at a rate of 1

radian/s2 (about 57 degrees/s2). I have stuck to radian/s2, rather than degree/s2 since there are

physical relationships between applied forces, torques and power that I want to maintain.

SmallBasic Physics Extension

 Page 10

 Installing the Extension
In order to use this extension you must add the files ‘LitDev.dll’ and ‘LitDev.xml’ to the lib sub-

folder within the Small Basic installation folder. You may need to create the lib folder if it

doesn’t already exist (if other extensions have not already been installed).

The Small Basic installation directory is usually found at:

 C:\Program Files\Microsoft\Small Basic (32 bit Windows)

 C:\Program Files (x86)\Microsoft\Small Basic (64 bit Windows)

Therefore, on a 32 bit Windows the following files will be added:

 C:\Program Files\Microsoft\Small Basic\lib\LitDev.dll

 C:\Program Files\Microsoft\Small Basic\lib\LitDev.xml

The other files in this extension zip include documentation, the examples used in the

documentation and some other Small Basic samples. These files are not required for the

extension to work and should not be saved in the lib folder, perhaps put them in your Documents

folder.

SmallBasic Physics Extension

 Page 11

 Examples
The following is a set of examples that briefly demonstrates the main features of this extension,

with an emphasis on how to get the engine to achieve convincing physical simulations.

They are just a beginning; the limits depend mainly on imagination and ingenuity, and perhaps

performance, when you should be moving beyond Small Basic.

Something that looks convincing may be completely physically wrong; it just looks plausible –

great for games, but perhaps not for weather forecasting or engineering simulators. Since this is

about simulating physics I add the warning not to believe any simulation (not specifically Box2D

but any computer simulation) has any bearing on reality, regardless of how realistic and

impressive the graphics look – in fact I would suggest the more effort has been spent making it

look visually realistic the less realistic the simulation is likely to be.

The main steps for any dynamic visual (game) program are the same, also for Small Basic and

especially using this extension are:

 Setup and initialisation

o Create all the sprites and game-play variables, perhaps also an intro or instructions.

o Add the sprites to the physics engine and position them or set initial conditions such as

velocity etc.

 Create a main game loop

o This is usually a While … EndWhile loop that repeats while the game plays, taking user

input, performing any calculations required and updates the display after all time-step

calculations have been performed, hopefully at a decent fps (frame per second).

 Write any subroutines to perform setup or game calculations

o This helps to isolate calculations from the logic of the main game loop and improve

reusability and development of a more complex project.

 Write event subroutines that set flags that are handled in the main game loop or its subroutines

o In Small Basic, events are handled asynchronously (at the same time on a different thread)

with the main program game loop. For this reason if we interact with the physics engine

from inside an event subroutine, the program will try to perform our event action at the

same time as the main game loop while sharing the same data – this will crash the program.

o For this reason we must set a flag (just a simple variable) to show that the event occurred

(e.g. a mouse click) and change the game play accordingly in the main game loop, where

calculations and updates are synchronous (one instruction follows the previous on the same

thread).

SmallBasic Physics Extension

 Page 12

Example 1 – A falling ball

Create the objects in Small Basic

ball = Shapes.AddEllipse(50,50)

Attach to the physics engine

Give the ball friction=0 and restitution=1 (a bouncy ball).

LDPhysics.AddMovingShape(ball,0,1,1)

Set its initial position near the top of the window with zero rotation (irrelivant for a circle) – if we

don’t set its position in the engine it will take the current position of the shape.

LDPhysics.SetPosition(ball,200,100,0)

Create a game loop

This is the repeating loop, where time-steps are performed to show the motion. The physics

engine will update the position and rotation of the bodies and redraw them. We put a short delay

to keep it smooth.

While ("True")
 LDPhysics.DoTimestep()
 Program.Delay(20)
EndWhile

The whole thing

ball = Shapes.AddEllipse(50,50)
LDPhysics.AddMovingShape(ball,0,1,1)
LDPhysics.SetPosition(ball,200,100,0)

While ("True")
 LDPhysics.DoTimestep()
 Program.Delay(20)
EndWhile

SmallBasic Physics Extension

 Page 13

Example 2 – A block hanging on a rope

Create the objects in Small Basic

We only need the block shape, since the rope method is special to the physics engine.

block = Shapes.AddRectangle(50,50)

Attach to the physics engine

Add the block and set its initial position – note the block is a moving shape.

LDPhysics.AddMovingShape(block,0,1,1)
LDPhysics.SetPosition(block,200,100,0)

Add a fixed anchor point 200 pixels to the right of the block and attach a rope between the fixed

anchor and the block.

anchor = LDPhysics.AddFixedAnchor(400,100)
LDPhysics.AddRope(anchor,block)

Create a game loop

This is the repeating loop, where time-steps are performed to show the motion. The physics

engine will update the position of the bodies and redraw them.

While ("True")
 LDPhysics.DoTimestep()
 Program.Delay(20)
EndWhile

The whole thing

block = Shapes.AddRectangle(50,50)
LDPhysics.AddMovingShape(block,0,1,1)
LDPhysics.SetPosition(block,200,100,0)

anchor = LDPhysics.AddFixedAnchor(400,100)
LDPhysics.AddRope(anchor,block)

While ("True")
 LDPhysics.DoTimestep()
 Program.Delay(20)
EndWhile

SmallBasic Physics Extension

 Page 14

Example 3 – A block hanging on a chain from its corner

To hang from a position that is not at the centre of a shape we need to create an anchor on the

corner of the block and attach the anchor to the block and the chain.

Create the objects in Small Basic

We only need the block shape, since the chain method is special to the physics engine.

block = Shapes.AddRectangle(50,50)

Attach to the physics engine

Add the block and set its initial position – note the block is a moving shape.

LDPhysics.AddMovingShape(block,0,1,1)
LDPhysics.SetPosition(block,200,100,0)

Add a moving anchor positioning it on one of the corners of the block and then attach it to the

block.

anchor1 = LDPhysics.AddMovingAnchor(225,125)
LDPhysics.AttachShapes(anchor1,block)

Add a fixed anchor point 200 pixels to the right of the block and attach a chain between the fixed

anchor and the anchor on the block.

anchor2 = LDPhysics.AddFixedAnchor(400,100)
LDPhysics.AddChain(anchor1,anchor2)

Create a game loop

This is just the same as before.

The whole thing

block = Shapes.AddRectangle(50,50)
LDPhysics.AddMovingShape(block,0,1,1)
LDPhysics.SetPosition(block,200,100,0)

anchor1 = LDPhysics.AddMovingAnchor(225,125)
LDPhysics.AttachShapes(anchor1,block)

anchor2 = LDPhysics.AddFixedAnchor(400,100)
LDPhysics.AddChain(anchor1,anchor2)

While ("True")

SmallBasic Physics Extension

 Page 15

 LDPhysics.DoTimestep()
 Program.Delay(20)
EndWhile

SmallBasic Physics Extension

 Page 16

Example 4 – A bullet hitting a pile of blocks

Create the objects in Small Basic and attach to the physics engine

Create 20 blocks and stack them up from the bottom of the window. We don’t really need to put

the created blocks in an array unless we want to access them individually later.

For i = 1 To 20
 block[i] = Shapes.AddRectangle(20,20)
 LDPhysics.AddMovingShape(block[i],0.3,0.8,1)
 LDPhysics.SetPosition(block[i],500,GraphicsWindow.Height-20*i+10,0)
EndFor

Create a small bullet and position it at the left of the screen and give it a large positive initial

velocity. We could give it more mass using a larger density or set it as a bullet type body using

LDPhysics.SetBullet, but here it seems OK as it is.

bullet = Shapes.AddEllipse(8,8)
LDPhysics.AddMovingShape(bullet,0,1,1)
LDPhysics.SetPosition(bullet,50,200,0)
LDPhysics.SetVelocity(bullet,1000,0)

Create a game loop

This is just the same as before.

The whole thing

For i = 1 To 20
 block[i] = Shapes.AddRectangle(20,20)
 LDPhysics.AddMovingShape(block[i],0.3,0.8,1)
 LDPhysics.SetPosition(block[i],500,GraphicsWindow.Height-20*i+10,0)
EndFor

bullet = Shapes.AddEllipse(8,8)
LDPhysics.AddMovingShape(bullet,0,1,1)
LDPhysics.SetPosition(bullet,50,200,0)
LDPhysics.SetVelocity(bullet,1000,0)

While ("True")
 LDPhysics.DoTimestep()
 Program.Delay(20)
EndWhile

SmallBasic Physics Extension

 Page 17

Example 5 – Interact with the game loop

We use example 4, but reset the bullet when the left mouse button is clicked and reset the bricks

when the right mouse button is clicked.

Capture the mouse click events

Set a flag when the left or right mouse click is registered.

leftMB = 0
rightMB = 0
GraphicsWindow.MouseDown = OnMouseDown

Sub OnMouseDown
 If (Mouse.IsLeftButtonDown) Then
 leftMB = 1
 ElseIf (Mouse.IsRightButtonDown) Then
 rightMB = 1
 EndIf
EndSub

Modified game loop

We need to either reset the bullet or blocks depending on the mouse click flag set. Note we have

to reset the click flags after we have processed the command. We also give the bullet a random

vertical (Y) component to its velocity.

 If (leftMB = 1) Then
 LDPhysics.SetPosition(bullet,50,200,0)
 LDPhysics.SetVelocity(bullet,1000,Math.GetRandomNumber(401)-201)
 leftMB = 0
 EndIf
 If (rightMB = 1) Then
 For i = 1 To 20
 LDPhysics.SetPosition(block[i],500,GraphicsWindow.Height-20*i+10,0)
 LDPhysics.SetVelocity(block[i],0,0)
 LDPhysics.SetRotation(block[i],0)
 EndFor
 rightMB = 0
 EndIf

The whole thing

For i = 1 To 20
 block[i] = Shapes.AddRectangle(20,20)
 LDPhysics.AddMovingShape(block[i],0.3,0.8,1)
 LDPhysics.SetPosition(block[i],500,GraphicsWindow.Height-20*i+10,0)
EndFor

bullet = Shapes.AddEllipse(8,8)
LDPhysics.AddMovingShape(bullet,0,1,1)
LDPhysics.SetPosition(bullet,50,200,0)
LDPhysics.SetVelocity(bullet,1000,0)

leftMB = 0
rightMB = 0
GraphicsWindow.MouseDown = OnMouseDown

While ("True")
 If (leftMB = 1) Then

SmallBasic Physics Extension

 Page 18

 LDPhysics.SetPosition(bullet,50,200,0)
 LDPhysics.SetVelocity(bullet,1000,Math.GetRandomNumber(101)-51)
 leftMB = 0
 EndIf
 If (rightMB = 1) Then
 For i = 1 To 20
 LDPhysics.SetPosition(block[i],500,GraphicsWindow.Height-20*i+10,0)
 LDPhysics.SetVelocity(block[i],0,0)
 LDPhysics.SetRotation(block[i],0)
 EndFor
 rightMB = 0
 EndIf
 LDPhysics.DoTimestep()
 Program.Delay(20)
EndWhile

Sub OnMouseDown
 If (Mouse.IsLeftButtonDown) Then
 leftMB = 1
 ElseIf (Mouse.IsRightButtonDown) Then
 rightMB = 1
 EndIf
EndSub

SmallBasic Physics Extension

 Page 19

Example 6 – Using images

We use a downloaded football image and create 10 bouncing balls.

Create the objects in Small Basic and attach to the physics engine

Load an image.

image = ImageList.LoadImage(Program.Directory+"/football.png")

Tell the physics engine that the image shapes are to be circles.

LDPhysics.LoadImagesAsCircles = "True"

Create the Small Basic image shapes, add them to the physics engine, set their position randomly,

and also set a random initial velocity.

For i = 1 To 10
 ball = Shapes.AddImage(image)
 LDPhysics.AddMovingShape(ball,0.2,0.9,1)
 LDPhysics.SetPosition(ball,Math.GetRandomNumber(500),Math.GetRandomNumber(300),0)
 LDPhysics.SetVelocity(ball,Math.GetRandomNumber(51)-101,0)
EndFor

Create a game loop

This is just the same as before.

The whole thing

image = ImageList.LoadImage(Program.Directory+"/football.png")

LDPhysics.LoadImagesAsCircles = "True"

For i = 1 To 10
 ball = Shapes.AddImage(image)
 LDPhysics.AddMovingShape(ball,0.2,0.9,1)
 LDPhysics.SetPosition(ball,Math.GetRandomNumber(500),Math.GetRandomNumber(300),0)
 LDPhysics.SetVelocity(ball,Math.GetRandomNumber(51)-101,0)
EndFor

While ("True")
 LDPhysics.DoTimestep()
 Program.Delay(20)
EndWhile

SmallBasic Physics Extension

 Page 20

Example 7 – A simple car

We use rotating attachments to allow the wheels to roll.

Create the objects in Small Basic

Create two wheels and the car body.

wheel1 = Shapes.AddEllipse(40,40)
wheel2 = Shapes.AddEllipse(40,40)
car = Shapes.AddRectangle(200,50)

Attach to the physics engine

Attach the wheels to the physics engine as moving shapes and position them.

LDPhysics.AddMovingShape(wheel1,1,0,1)
LDPhysics.AddMovingShape(wheel2,1,0,1)
LDPhysics.SetPosition(wheel1,180,400,0)
LDPhysics.SetPosition(wheel2,320,400,0)

Attach the car body to the physics engine as a moving shape and position it.

LDPhysics.AddMovingShape(car,0.3,0.5,1)
LDPhysics.SetPosition(car,250,360,0)

Attach the wheels to the car as rotating attachments.

LDPhysics.AttachShapesWithRotation(wheel1,car)
LDPhysics.AttachShapesWithRotation(wheel2,car)

Start the car moving to the right.

LDPhysics.SetVelocity(car,100,0)

Create a game loop

This is just the same as before.

The whole thing

wheel1 = Shapes.AddEllipse(40,40)
wheel2 = Shapes.AddEllipse(40,40)
car = Shapes.AddRectangle(200,50)

LDPhysics.AddMovingShape(wheel1,1,0,1)
LDPhysics.AddMovingShape(wheel2,1,0,1)

SmallBasic Physics Extension

 Page 21

LDPhysics.SetPosition(wheel1,180,400,0)
LDPhysics.SetPosition(wheel2,320,400,0)

LDPhysics.AddMovingShape(car,0.3,0.5,1)
LDPhysics.SetPosition(car,250,360,0)

LDPhysics.AttachShapesWithRotation(wheel1,car)
LDPhysics.AttachShapesWithRotation(wheel2,car)

LDPhysics.SetVelocity(car,100,0)

While ("True")
 LDPhysics.DoTimestep()
 Program.Delay(20)
EndWhile

SmallBasic Physics Extension

 Page 22

Example 8 – A car that moves with arrow keys

Following example 7, we create the car, use images for wheels that are set to be circles in the

physics engine.

Create the objects in Small Basic and attach to the physics engine

The wheels have a high friction value of 10 to reduce wheel spin.

image = ImageList.LoadImage(Program.Directory+"/gear_wheel.png")

wheel1 = Shapes.AddImage(image)
wheel2 = Shapes.AddImage(image)
car = Shapes.AddRectangle(200,20)

LDPhysics.LoadImagesAsCircles = "True"

LDPhysics.AddMovingShape(wheel1,10,0,1)
LDPhysics.AddMovingShape(wheel2,10,0,1)
LDPhysics.SetPosition(wheel1,180,400,0)
LDPhysics.SetPosition(wheel2,320,400,0)

LDPhysics.AddMovingShape(car,0.3,0.5,1)
LDPhysics.SetPosition(car,250,380,0)

LDPhysics.AttachShapesWithRotation(wheel1,car)
LDPhysics.AttachShapesWithRotation(wheel2,car)

LDPhysics.SetVelocity(car,100,0)

Create a game loop and keyboard controls

If the left key is pressed, a flag (left) is set and the rotation of the wheels is increased anti-

clockwise by applying a negative torque and the car is given a small impulse left to get it going

and up a bit (helps climb obstacles – add your own ramps, bricks or other obstacles).

Similarly for the right key.

left = 0
right = 0
GraphicsWindow.KeyDown = OnKeyDown
GraphicsWindow.KeyUp = OnKeyUp

Get the mass of the car and inertia of the wheels.

mass = LDPhysics.GetMass(car)

SmallBasic Physics Extension

 Page 23

inerta = LDPhysics.GetInertia(wheel1)

While ("True")
 If (left = 1) Then
 LDPhysics.SetTorque(wheel1,-50*inerta)
 LDPhysics.SetTorque(wheel2,-50*inerta)
 LDPhysics.SetImpulse(car,-mass,-0.1*mass)
 EndIf
 If (right = 1) Then
 LDPhysics.SetTorque(wheel1,50*inerta)
 LDPhysics.SetTorque(wheel2,50*inerta)
 LDPhysics.SetImpulse(car,mass,-0.1*mass)
 EndIf
 LDPhysics.DoTimestep()
 Program.Delay(20)
EndWhile

Sub OnKeyDown
 k = GraphicsWindow.LastKey
 If (k = "Left") Then
 left = 1
 EndIf
 If (k = "Right") Then
 right = 1
 EndIf
EndSub

Sub OnKeyUp
 k = GraphicsWindow.LastKey
 If (k = "Left") Then
 left = 0
 EndIf
 If (k = "Right") Then
 right = 0
 EndIf
EndSub

The whole thing

image = ImageList.LoadImage(Program.Directory+"/gear_wheel.png")

wheel1 = Shapes.AddImage(image)
wheel2 = Shapes.AddImage(image)
car = Shapes.AddRectangle(200,20)

LDPhysics.LoadImagesAsCircles = "True"

LDPhysics.AddMovingShape(wheel1,10,0,1)
LDPhysics.AddMovingShape(wheel2,10,0,1)
LDPhysics.SetPosition(wheel1,180,400,0)
LDPhysics.SetPosition(wheel2,320,400,0)

LDPhysics.AddMovingShape(car,0.3,0.5,1)
LDPhysics.SetPosition(car,250,380,0)

LDPhysics.AttachShapesWithRotation(wheel1,car)
LDPhysics.AttachShapesWithRotation(wheel2,car)

LDPhysics.SetVelocity(car,100,0)

SmallBasic Physics Extension

 Page 24

left = 0
right = 0
GraphicsWindow.KeyDown = OnKeyDown
GraphicsWindow.KeyUp = OnKeyUp

mass = LDPhysics.GetMass(car)
inerta = LDPhysics.GetInertia(wheel1)

While ("True")
 If (left = 1) Then
 LDPhysics.SetTorque(wheel1,-50*inerta)
 LDPhysics.SetTorque(wheel2,-50*inerta)
 LDPhysics.SetImpulse(car,-mass,-0.1*mass)
 EndIf
 If (right = 1) Then
 LDPhysics.SetTorque(wheel1,50*inerta)
 LDPhysics.SetTorque(wheel2,50*inerta)
 LDPhysics.SetImpulse(car,mass,-0.1*mass)
 EndIf
 LDPhysics.DoTimestep()
 Program.Delay(20)
EndWhile

Sub OnKeyDown
 k = GraphicsWindow.LastKey
 If (k = "Left") Then
 left = 1
 EndIf
 If (k = "Right") Then
 right = 1
 EndIf
EndSub

Sub OnKeyUp
 k = GraphicsWindow.LastKey
 If (k = "Left") Then
 left = 0
 EndIf
 If (k = "Right") Then
 right = 0
 EndIf
EndSub

SmallBasic Physics Extension

 Page 25

Example 9 – Change the colour of hit blocks (Collision Detection)

We use example 4 as a starting point and modify it to change the colour of any block hit by the

bullet.

Modify the game loop

We use the LDPhysics.GetCollisions method to get a list of blocks hit by the bullet and change

their colour using the LDShapes.BrushColour method.

While ("True")
 LDPhysics.DoTimestep()
 hits = LDPhysics.GetCollisions(bullet)
 For i = 1 To Array.GetItemCount(hits)
 If (hits[i] <> "Wall") Then
 LDShapes.BrushColour(hits[i],"Red")
 EndIf
 EndFor
 Program.Delay(20)
EndWhile

The whole thing

For i = 1 To 20
 block[i] = Shapes.AddRectangle(20,20)
 LDPhysics.AddMovingShape(block[i],0.3,0.8,1)
 LDPhysics.SetPosition(block[i],500,GraphicsWindow.Height-20*i+10,0)
EndFor

bullet = Shapes.AddEllipse(8,8)
LDPhysics.AddMovingShape(bullet,0,1,1)
LDPhysics.SetPosition(bullet,50,200,0)
LDPhysics.SetVelocity(bullet,1000,0)

While ("True")
 LDPhysics.DoTimestep()
 hits = LDPhysics.GetCollisions(bullet)
 For i = 1 To Array.GetItemCount(hits)
 If (hits[i] <> "Wall") Then
 LDShapes.BrushColour(hits[i],"Red")
 EndIf
 EndFor
 Program.Delay(20)
EndWhile

SmallBasic Physics Extension

 Page 26

Example 10 – A balloon with a suspended rope and box (Mass and Forces)

Create the objects in Small Basic

These are just the balloon and box.

balloon = Shapes.AddEllipse(50,50)
box = Shapes.AddRectangle(50,50)

Attach to the physics engine

Add the balloon and box.

LDPhysics.AddMovingShape(balloon,0.3,0.5,1)
LDPhysics.SetPosition(balloon,100,100,0)
LDPhysics.AddMovingShape(box,0.3,0.5,1)
LDPhysics.SetPosition(box,300,300,0)

Create anchors on the balloon and box for the rope.

anchorBalloon = LDPhysics.AddMovingAnchor(100,125)
LDPhysics.AttachShapesWithRotation(balloon,anchorBalloon)
anchorBox = LDPhysics.AddMovingAnchor(300,275)
LDPhysics.AttachShapesWithRotation(box,anchorBox)

Now connect the rope to the anchors.

rope = LDPhysics.AddRope(anchorBalloon,anchorBox)

Finally, calculate the mass of the entire system.

boxMass = LDPhysics.GetMass(box)
balloonMass = LDPhysics.GetMass(balloon)
anchorBalloonMass = LDPhysics.GetMass(anchorBalloon)
anchorBoxMass = LDPhysics.GetMass(anchorBox)
ropeMass = LDPhysics.GetMass(rope)

totalMass = balloonMass+boxMass+ropeMass+anchorBalloonMass+anchorBoxMass

Create a game loop

We set an upwards force equivalent to the total mass of the system acting against gravity (100

pixel/s2), and apply it to the balloon each time-step.

While ("True")
 LDPhysics.SetForce(balloon,0,-100*totalMass)

SmallBasic Physics Extension

 Page 27

 LDPhysics.DoTimestep()
 Program.Delay(20)
EndWhile

The whole thing

balloon = Shapes.AddEllipse(50,50)
box = Shapes.AddRectangle(50,50)

LDPhysics.AddMovingShape(balloon,0.3,0.5,1)
LDPhysics.SetPosition(balloon,100,100,0)
LDPhysics.AddMovingShape(box,0.3,0.5,1)
LDPhysics.SetPosition(box,300,300,0)

anchorBalloon = LDPhysics.AddMovingAnchor(100,125)
LDPhysics.AttachShapesWithRotation(balloon,anchorBalloon)
anchorBox = LDPhysics.AddMovingAnchor(300,275)
LDPhysics.AttachShapesWithRotation(box,anchorBox)

rope = LDPhysics.AddRope(anchorBalloon,anchorBox)

boxMass = LDPhysics.GetMass(box)
balloonMass = LDPhysics.GetMass(balloon)
anchorBalloonMass = LDPhysics.GetMass(anchorBalloon)
anchorBoxMass = LDPhysics.GetMass(anchorBox)
ropeMass = LDPhysics.GetMass(rope)

totalMass = balloonMass+boxMass+ropeMass+anchorBalloonMass+anchorBoxMass

While ("True")
 LDPhysics.SetForce(balloon,0,-100*totalMass)
 LDPhysics.DoTimestep()
 Program.Delay(20)
EndWhile

SmallBasic Physics Extension

 Page 28

Example 11 – Mixed shapes

Demo showing rectangle, circle and triangle shapes; triangles were a struggle to integrate with

Small Basic due to the way they move and rotate – try moving or rotating a triangle in Small Basic

and figure out what it is doing.

The whole thing

GraphicsWindow.PenWidth = 1

For i = 1 To 50
 mode = Math.GetRandomNumber(3)
 If (mode = 1) Then
 GraphicsWindow.BrushColor = "Yellow"
 temp = Shapes.AddRectangle(20+Math.GetRandomNumber(20),20+Math.GetRandomNumber(20))

 LDPhysics.AddMovingShape(temp,0.5,0.8,1)
 LDPhysics.SetPosition(temp,Math.GetRandomNumber(600),50,0)
 ElseIf (mode = 2) Then
 GraphicsWindow.BrushColor = "Red"
 rad = 20+Math.GetRandomNumber(20)
 temp = Shapes.AddEllipse(rad,rad)

 LDPhysics.AddMovingShape(temp,0.5,0.8,1)
 LDPhysics.SetPosition(temp,Math.GetRandomNumber(600),50,0)
 Else
 GraphicsWindow.BrushColor = "Green"
 temp = Shapes.AddTriangle(0,0,20+Math.GetRandomNumber(20),0,0,2+Math.GetRandomNumber(20))

 LDPhysics.AddMovingShape(temp,0.5,0.8,1)
 LDPhysics.SetPosition(temp,Math.GetRandomNumber(600),50,0)
 EndIf
EndFor

While ("True")
 LDPhysics.DoTimestep()
 Program.Delay(20)
EndWhile

SmallBasic Physics Extension

 Page 29

Example 12 – Attaching and grouping shapes

Two ways to attach shapes are available, AttachShapes and GroupShapes. The attach method

works best for objects with moving parts, for example car wheels, but the attached shapes can

move a bit when they collide with other shapes or boundaries – they are springy. The group

method maintains completely rigid connections.

As well as, and probably a consequence of being springy, the attached shapes appear to slowly

consume linear and rotational momentum, while the grouped shapes appear to slowly gain

momentum.

A compound body is any collection of attached or grouped shapes.

The only problems when mixing attached and grouped shapes in the same compound body seem

to be when the shapes have very different masses, which can be fixed by using appropriate

densities.

In the terminology of Box2D, attached shapes are connected by Revolute and Distance joints,

while grouping moves the shapes into one body.

Therefore using the grouping method, the position, velocity and angle for all grouped shapes will

be the same since they are now the same body. The position of the compound body (SetPosition

and GetPosition) refers to that of the second shape entered using the GroupShapes command

(the first shape is ‘added into’ the second, maintaining their relative positions). The centre of

mass and hence the centre of rotation is recalculated for the grouped compound body and will in

general be different from its position (that of the shape to which others are grouped). This also

means that the mass, inertia, force, torque etc. for any shape in the group now applies to the

compound body as a whole. The collisions reported using GetCollisions still refer to the original

shapes.

The recommended approach is:

 Use the AttachShapes method for any compound body that will have internal movement such as

rotation, connected rope/chain etc.

 Use the GroupShapes method for a compound body which has no moving parts, but is just a

collection of shapes.

It is possible to attach and group shapes into complex bodies, but some care has to be taken to

create a stable model. First group all shapes as required into compound bodies, then to attach

(usually with rotation) these compound bodies.

SmallBasic Physics Extension

 Page 30

The following example shows how a pencil can be made using both methods; in this case the

grouping method is probably most appropriate.

The whole thing

GraphicsWindow.PenWidth = 0
GraphicsWindow.Width = 1000
GraphicsWindow.Height = 700
GraphicsWindow.Top = 0
GraphicsWindow.Left = 0

'Pencil 1
GraphicsWindow.BrushColor = "Yellow"
body1 = Shapes.AddRectangle(20,200)
GraphicsWindow.BrushColor = "Brown"
point1 = Shapes.AddTriangle(0,0,20,0,10,30)
GraphicsWindow.BrushColor = "Pink"
eraser1 = Shapes.AddRectangle(20,30)

LDPhysics.AddMovingShape(body1,0.3,0.3,1)
LDPhysics.SetPosition(body1,200,200,0)
LDPhysics.AddMovingShape(point1,0.3,0.5,1)
LDPhysics.SetPosition(point1,200,310,0)
LDPhysics.AddMovingShape(eraser1,0.8,0.8,1)
LDPhysics.SetPosition(eraser1,200,85,0)

LDPhysics.GroupShapes(point1,body1)
LDPhysics.GroupShapes(eraser1,body1)

'Pencil 2
GraphicsWindow.BrushColor = "Yellow"
body2 = Shapes.AddRectangle(20,200)
GraphicsWindow.BrushColor = "Brown"
point2 = Shapes.AddTriangle(0,0,20,0,10,30)
GraphicsWindow.BrushColor = "Pink"
eraser2 = Shapes.AddRectangle(20,30)

LDPhysics.AddMovingShape(body2,0.3,0.3,1)
LDPhysics.SetPosition(body2,800,200,0)
LDPhysics.AddMovingShape(point2,0.3,0.5,1)
LDPhysics.SetPosition(point2,800,310,0)
LDPhysics.AddMovingShape(eraser2,0.8,0.8,1)
LDPhysics.SetPosition(eraser2,800,85,0)

LDPhysics.AttachShapes(point2,body2)
LDPhysics.AttachShapes(eraser2,body2)

'A little sideways kick to break the symetry of the fall
LDPhysics.SetImpulse(body1,100,0)
LDPhysics.SetImpulse(body2,100,0)

While ("True")
 LDPhysics.DoTimestep()
 Program.Delay(10)
EndWhile

SmallBasic Physics Extension

 Page 31

Example 13 – Defying gravity and user controlled interaction

If we don’t interact with the physics engine, the shapes will fall, roll or swing etc. depending on

what they are. If we want a paddle or other user movable object to interact with the moving

shapes, then we cannot just move it since this will be seen like teleporting by the physics engine

– the shape just disappeared from one place and reappeared in another. If this happens any

interactions during the implied movement are lost.

The following is one approach to handling this and has a few steps.

 Create the user moving shape with a very large density (therefore large mass) and therefore won’t

move much when hit by other moving bodies.

 Apply a vertically up force to counteract gravity – the only remaining forces on the shape that can

cause movement will be collisions from other shapes, but since they are light compared to our

shape, these movements will be small.

 We can then reposition our shape to account for any small movements if we want it to be

stationary – a teleport, but a very small one.

 We can then apply additional forces or torques to move or rotate our shape as required. It is

important to apply a force or torque and not just reposition or rotate our shape manually if we

want it to interact with the environment.

The whole thing

gw = 600
gh = 600
GraphicsWindow.Width = gw
GraphicsWindow.Height = gh

'Very heavy thin paddle, just smaller than the window
GraphicsWindow.PenWidth = 0
GraphicsWindow.BrushColor = "Black"
rod = Shapes.AddRectangle(gw-2,2)
LDPhysics.AddMovingShape(rod,0.3,0.5,1000000)
LDPhysics.SetPosition(rod,gw/2,gh/2,0)

'Some blocks
GraphicsWindow.PenWidth = 1
GraphicsWindow.BrushColor = "Yellow"
For i = 1 To 20

SmallBasic Physics Extension

 Page 32

 block = Shapes.AddRectangle(20,20)
 LDPhysics.AddMovingShape(block,0.3,0.9,1)
 LDPhysics.SetPosition(block,gw/2,gh-i*20,0)
 LDPhysics.SetBullet(block)
EndFor

LDPhysics.TimeStep = 0.01 '100 fps

While ("True")
 start = Clock.ElapsedMilliseconds
 'Upwards force to counteract gravity
 LDPhysics.SetForce(rod,0,-LDPhysics.GetMass(rod)*100)
 'Reposition following any small movements using current angle
 LDPhysics.SetPosition(rod,gw/2,gh/2,LDPhysics.GetAngle(rod))
 'Apply rotation torque if we are rotating less than 45 deg/s
 If (LDPhysics.GetRotation(rod) < 45) Then '1/8 turn per sec
 LDPhysics.SetTorque(rod,1*LDPhysics.GetInertia(rod))
 EndIf
 LDPhysics.DoTimestep()
 'Delay upto timestep time
 delay = 1000*LDPhysics.TimeStep - (Clock.ElapsedMilliseconds - start)
 If (delay > 0) Then
 Program.Delay(delay)
 EndIf
EndWhile

An alternative method

The following is an alternative approach, attaching the paddle with rotation to a fixed central

anchor.

gw = 600
gh = 600
GraphicsWindow.Width = gw
GraphicsWindow.Height = gh

'Very heavy thin paddle, just smaller than the window
GraphicsWindow.PenWidth = 0
GraphicsWindow.BrushColor = "Black"
rod = Shapes.AddRectangle(gw-2,2)
LDPhysics.AddMovingShape(rod,0.3,0.5,1000000)
LDPhysics.SetPosition(rod,gw/2,gh/2,0)

'Attach with rotation to a fixed anchor
anchor = LDPhysics.AddFixedAnchor(gw/2,gh/2)
LDPhysics.AttachShapesWithRotation(anchor,rod)

'Some blocks
GraphicsWindow.PenWidth = 1
GraphicsWindow.BrushColor = "Yellow"
For i = 1 To 20
 block = Shapes.AddRectangle(20,20)
 LDPhysics.AddMovingShape(block,0.3,0.9,1)
 LDPhysics.SetPosition(block,gw/2,gh-i*20,0)
 LDPhysics.SetBullet(block)
EndFor

LDPhysics.TimeStep = 0.01 '100 fps

SmallBasic Physics Extension

 Page 33

While ("True")
 start = Clock.ElapsedMilliseconds
 'Apply rotation torque if we are rotating less than 45 deg/s
 If (LDPhysics.GetRotation(rod) < 45) Then '1/8 turn per sec
 LDPhysics.SetTorque(rod,1*LDPhysics.GetInertia(rod))
 EndIf
 LDPhysics.DoTimestep()
 'Delay upto timestep time
 delay = 1000*LDPhysics.TimeStep - (Clock.ElapsedMilliseconds - start)
 If (delay > 0) Then
 Program.Delay(delay)
 EndIf
EndWhile

SmallBasic Physics Extension

 Page 34

Example 14 – Getting a shape from coordinates (Collision Detection)

We use example 6 and modify it so that when the user mouse clicks a ball it is given a vertical

impulse.

Mouse click event handling

We need the standard Small Basic event raising procedure and set a flag (mouseDown) when the

mouse is clicked.

mouseDown = 0
GraphicsWindow.MouseDown = OnMouseDown

Sub OnMouseDown
 mouseDown = 1
EndSub

We then need to act on this flag in the main game loop. We use the method GetShapeAt, which

returns the shape (if any) at the input coordinates – in this case the mouse coordinates.

 If (mouseDown = 1) Then
 xM = GraphicsWindow.MouseX
 yM = GraphicsWindow.MouseY
 hit = LDPhysics.GetShapeAt(xM,yM)
 If (hit <> "") Then
 LDPhysics.SetImpulse(hit,0,-1000*LDPhysics.GetMass(hit))
 EndIf
 mouseDown = 0
 EndIf

The whole thing

image = ImageList.LoadImage(Program.Directory+"/football.png")

LDPhysics.LoadImagesAsCircles = "True"

For i = 1 To 10
 ball = Shapes.AddImage(image)
 LDPhysics.AddMovingShape(ball,0.2,0.9,1)
 LDPhysics.SetPosition(ball,Math.GetRandomNumber(500),Math.GetRandomNumber(300),0)
 LDPhysics.SetVelocity(ball,Math.GetRandomNumber(51)-101,0)
EndFor

mouseDown = 0
GraphicsWindow.MouseDown = OnMouseDown

While ("True")
 If (mouseDown = 1) Then
 xM = GraphicsWindow.MouseX
 yM = GraphicsWindow.MouseY
 hit = LDPhysics.GetShapeAt(xM,Ym)
 If (hit <> "") Then
 LDPhysics.SetImpulse(hit,0,-1000*LDPhysics.GetMass(hit))
 EndIf
 mouseDown = 0
 EndIf
 LDPhysics.DoTimestep()
 Program.Delay(20)
EndWhile

SmallBasic Physics Extension

 Page 35

Sub OnMouseDown
 mouseDown = 1
EndSub

SmallBasic Physics Extension

 Page 36

Example 15 – Using polygon shapes

Using the FC or LDShapes extension, it is possible to create and use general polygons, and as long

as they are convex (all internal angles are less than 180 degrees) they can also be used by this

extension. As an alternative it is possible to create compound shapes using the GroupShapes

method, which is required in any case for shapes with concave boundaries or compound objects

with varying properties such as density or restitution.

The whole thing

points[0]["X"] = 0
points[0]["Y"] = 0
points[1]["X"] = 40
points[1]["Y"] = 0
points[2]["X"] = 60
points[2]["Y"] = 40
points[3]["X"] = 40
points[3]["Y"] = 80
points[4]["X"] = 0
points[4]["Y"] = 20

For i = 1 To 10
 polygon = LDShapes.AddPolygon(points)
 LDPhysics.AddMovingShape(polygon,0.5,0.8,1)
 LDPhysics.SetPosition(polygon,60*i,100,0)
 LDPhysics.SetTorque(polygon,100*LDPhysics.GetInertia(polygon))
EndFor

While ("True")
 LDPhysics.DoTimestep()
 Program.Delay(20)
EndWhile

SmallBasic Physics Extension

 Page 37

Example 16 – Sideways Scrolling

We extend Example 11 to use the Left and Right keys to pan left and right as the shapes fall.

No vertical boundaries

We can remove the vertical boundaries by setting them just larger than the GraphicsWindow.

LDPhysics.SetBoundaries(-1,1+GraphicsWindow.Width,0,GraphicsWindow.Height)

If we want to increase the off-screen region where the physics calculations are performed we

could set the AABB at the start of the code (the first Physics command). The following sets the X

(horizontal) region to ±1000 m or 10000 pixels using the default scaling of 10 pixel/m.

LDPhysics.SetAABB(-1000,1000,-100,200)
LDPhysics.Reset()

Key press events

We flag when the left and right keys are down using the KeyDown and KeyUp events.

panLeft = 0
panRight = 0
GraphicsWindow.keyDown = OnkeyDown
GraphicsWindow.keyUp = OnkeyUp
Sub OnkeyDown
 k = GraphicsWindow.LastKey
 If (k = "Left") Then
 panLeft = 1
 ElseIf (k = "Right") Then
 panRight = 1
 EndIf
EndSub
Sub OnkeyUp
 k = GraphicsWindow.LastKey
 If (k = "Left") Then
 panLeft = 0
 ElseIf (k = "Right") Then
 panRight = 0
 EndIf
EndSub

We write a subroutine to pan the display (10 pixels per step) when the key-press flag is set.

Sub handleEvents
 speed = 10
 If (panLeft = 1) Then
 LDPhysics.PanView(-speed,0)
 EndIf
 If (panRight = 1) Then
 LDPhysics.PanView(speed,0)
 EndIf
EndSub

The whole thing

LDPhysics.SetAABB(-1000,1000,-100,200)
LDPhysics.Reset()

GraphicsWindow.PenWidth = 1

SmallBasic Physics Extension

 Page 38

For i = 1 To 50
 mode = Math.GetRandomNumber(3)
 If (mode = 1) Then
 GraphicsWindow.BrushColor = "Yellow"
 temp = Shapes.AddRectangle(20+Math.GetRandomNumber(20),20+Math.GetRandomNumber(20))
 LDPhysics.AddMovingShape(temp,0.5,0.8,1)
 LDPhysics.SetPosition(temp,Math.GetRandomNumber(600),50,0)
 ElseIf (mode = 2) Then
 GraphicsWindow.BrushColor = "Red"
 rad = 20+Math.GetRandomNumber(20)
 temp = Shapes.AddEllipse(rad,rad)
 LDPhysics.AddMovingShape(temp,0.5,0.8,1)
 LDPhysics.SetPosition(temp,Math.GetRandomNumber(600),50,0)
 Else
 GraphicsWindow.BrushColor = "Green"
 temp = Shapes.AddTriangle(0,0,20+Math.GetRandomNumber(20),0,0,2+Math.GetRandomNumber(20))
 LDPhysics.AddMovingShape(temp,0.5,0.8,1)
 LDPhysics.SetPosition(temp,Math.GetRandomNumber(600),50,0)
 EndIf
EndFor

panLeft = 0
panRight = 0
GraphicsWindow.keyDown = OnkeyDown
GraphicsWindow.keyUp = OnkeyUp
Sub OnkeyDown
 k = GraphicsWindow.LastKey
 If (k = "Left") Then
 panLeft = 1
 ElseIf (k = "Right") Then
 panRight = 1
 EndIf
EndSub
Sub OnkeyUp
 k = GraphicsWindow.LastKey
 If (k = "Left") Then
 panLeft = 0
 ElseIf (k = "Right") Then
 panRight = 0
 EndIf
EndSub

LDPhysics.SetBoundaries(-1,1+GraphicsWindow.Width,0,GraphicsWindow.Height)

While ("True")
 handleEvents()
 LDPhysics.DoTimestep()
 Program.Delay(20)
EndWhile

Sub handleEvents
 speed = 10
 If (panLeft = 1) Then
 LDPhysics.PanView(-speed,0)
 EndIf
 If (panRight = 1) Then
 LDPhysics.PanView(speed,0)
 EndIf
EndSub

SmallBasic Physics Extension

 Page 39

 Other Samples
Here are some screenshots of other samples included.

Cogs.sb

Intermeshing cogs that turn.

SmallBasic Physics Extension

 Page 40

Joints.sb

Some advanced joints, including motors, pulleys and gears.

SmallBasic Physics Extension

 Page 41

physics-sample.sb

Bouncing balls with ropes and chains.

SmallBasic Physics Extension

 Page 42

physics-sample-car.sb

A moving car.

physics-sample-pencil.sb

Attached and grouped shapes.

SmallBasic Physics Extension

 Page 43

physics-sample-rope-bridge.sb

Many interacting shapes.

SmallBasic Physics Extension

 Page 44

physics-sample-water.sb

Moving water molecules.

SmallBasic Physics Extension

 Page 45

pool.sb

A full pool game.

TopDownCar.sb

A car with skid and crash detection in zero gravity, top-down.

SmallBasic Physics Extension

 Page 46

 Physics Extension API
The following is a list of the parameters and operations (Application Programming Interface)

available with this extension.

ChainColour PARAMETER

The colour to be used for chains.

LoadImagesAsCircles PARAMETER

Toggle whether image shapes will be loaded as circles - "True" or "False" (default is "False").

MaxPolygonVertices PARAMETER

The physics engine maximum number of vertices on convex polygons (default 8).

MaxProxies PARAMETER

The physics engine maximum number of objects 'proxies' (default 1024).

PositionIterations PARAMETER

The physics engine position iterations (default 2).

RopeColour PARAMETER

The colour to be used for ropes.

Scaling PARAMETER

The physics engine scaling (pixel/m, default 10). It is not recommended to change this.

TimeStep PARAMETER

The physics engine time-step size (default 0.025).

VelocityIterations PARAMETER

The physics engine velocity iterations (default 6).

VelocityThreshold PARAMETER

The physics engine velocity threshold for inelastic collisions 'sticky walls' (default 1).

AddChain(shape1,shape2) OPERATION

Add a chain between two existing shapes.

SmallBasic Physics Extension

 Page 47

shape1

First shape.

shape2

Second shape.

Returns

The chain name.

AddExplosion(posX,posY,power,damping,colour) OPERATION

Make an explosion, which consists of 50x20kg particles blast apart over 500ms.

posX

The X coordinate of the explosion.

posY

The Y coordinate of the explosion.

power

The explosion force, this is the initial velocity of the blast particles.

damping

A damping for the blast, the smaller this value the larger the blast range (default 10).

colour

An optional colour of the explosion particles ("" for none).

Returns

None.

AddFixedAnchor(posX,posY) OPERATION

Add a new small, transparent shape to be used as a fixed anchor point.

posX

The X coordinate of the anchor.

posY

The Y coordinate of the anchor.

Returns

The anchor shape name.

AddFixedShape(shapeName,friction,restitution) OPERATION

Add an existing Small Basic shape to the physics engine as a fixed (non-dynamic) shape with

friction and restitution that affects shapes that hit it.

shapeName

The name of the shape.

SmallBasic Physics Extension

 Page 48

friction

The shape friction (usually 0 to 1).

restitution

The shape restitution or bounciness (usually 0 to 1).

Returns

None.

AddInactiveShape(shapeName) OPERATION

Add an existing Small Basic shape to the physics engine as an inactive (non-dynamic and non-

interacting) shape which only moves with the PanView method.

shapeName

The name of the shape.

Returns

None.

AddMovingAnchor(posX,posY) OPERATION

Add a new small, transparent and high density shape to be used as a moving anchor point.

posX

The X coordinate of the anchor.

posY

The Y coordinate of the anchor.

Returns

The anchor shape name.

AddMovingShape(shapeName,friction,restitution,density) OPERATION

Add an existing Small Basic shape to the physics engine as a moving (dynamic) shape.

shapeName

The name of the shape.

friction

The shape friction (usually 0 to 1).

restitution

The shape restitution or bounciness (usually 0 to 1). If a negative value is set for restitution, then

the shape will be added with a very small size which may be used to add an inactive image that

can be grouped within an irregular compound shape that matches the image boundary.

density

The shape density (default 1).

Returns

None.

SmallBasic Physics Extension

 Page 49

AddRope(shape1,shape2) OPERATION

Add a rope between two existing shapes.

shape1

First shape.

shape2

Second shape.

Returns

The rope name.

AttachShapes(shape1,shape2) OPERATION

Connect two shapes to move together as one. The shapes are connected with a distance joint

and may wobble a bit if they are hit.

shape1

The first shape name.

shape2

The second shape name.

Returns

None.

AttachShapesWithJoint(shape1,shape2,type,collide,parameters) OPERATION

Connect two shapes to move together as one with one of several joint types. These can be

advanced and require reference to Box2D manual. In many cases it is best to prevent shape

rotation for the joints to behave as desired. Multiple joints may also be applied to shapes. The

methods use the initial shape positions, so set these first.

shape1

The first shape name.

shape2

The second shape name.

type

One of the following joint types.

 "Distance" - maintain a fixed distance between the shapes.

 "Gear" - link Prismatic or Revolute joints (previously created) of 2 shapes.

 "Line" - move the shapes along a line initially connecting the shapes.

 "Mouse" - move the shape to follow the mouse (both shape names should be the

same).

 "Prismatic_H" - move shapes vertically along a line between the two shapes.

 "Prismatic_V" - move shapes horizontally along a line between the two shapes.

SmallBasic Physics Extension

 Page 50

 "Pulley" - a pulley system, one shape moves up as the other moves down - position

the shapes initially at the extreme points of the pulley motion.

 "Revolute" - the shapes can rotate about each other.

collide

The connected shapes can interact with each other "True" or "False" (default).

parameters

Optional parameters (default ""), multiple parameters are in an array.

 "Distance" - damping ratio (default 0)

 "Gear" - gear ratio, first joint, second joint (default 1, auto detect joints)

 "Line" - X direction, Y direction, lower translation, upper translation (default line

connecting shapes, no limits)

 "Mouse" - max acceleration, damping ratio (default 10000, 0.7)

 "Prismatic_H" – X direction, Y direction, lower translation, upper translation

(default 1,0, no limits)

 "Prismatic_V" - X direction, Y direction, lower translation, upper translation

(default 0,1, no limits)

 "Pulley" - pulley ratio (block and tackle, default 1)

 "Revolute" - lower angle, upper angle (default no limits)

Returns

The joint name.

AttachShapesWithRotation(shape1,shape2) OPERATION

Connect two shapes to move together as one, but allow the shapes to rotate about each other.

shape1

The first shape name.

shape2

The second shape name.

Returns

None.

BoxShape(shapeName,x1,y1,x2,y2) OPERATION

Set a shape to remain within a box within the view. This is similar to PanView, except that the

view pans automatically to keep the specified shape within a box region of the GraphicsWindow.

Only one shape can be boxed. To unset shape box, set the shapeName to "".

shapeName

The shape to box or "".

SmallBasic Physics Extension

 Page 51

x1

The left x coordinate of the box.

y1

The top x coordinate of the box.

x2

The right y coordinate of the box.

y2

The bottom y coordinate of the box.

Returns

None.

BrakeTire(shapeName) OPERATION

Apply a brake to a tire shape.

shapeName

The tire shape to brake.

Returns

None.

DetachJoint(jointName) OPERATION

Disconnect two shapes that were previously joined with a joint.

jointName

The joint name.

Returns

None.

DetachShapes(shape1,shape2) OPERATION

Disconnect two shapes that were previously attached.

shape1

The first shape name.

shape2

The second shape name.

Returns

None.

SmallBasic Physics Extension

 Page 52

DisconnectShape(shapeName) OPERATION

Disconnect shape from the physics engine without deleting the shape.

shapeName

The shape name.

Returns

None.

DoTimestep() OPERATION

Perform a time-step update.

Returns

None.

FollowShapeX(shapeName) OPERATION

Set a shape to remain stationary at X position in the view. This is similar to PanView, except that

the view pans automatically to keep the specified shape at a constant visual X location. Only one

shape can be followed in X direction. To unset shape following, set the shapeName to "".

shapeName

The shape to follow or "".

Returns

None.

FollowShapeY(shapeName) OPERATION

Set a shape to remain stationary at Y position in the view. This is similar to PanView, except that

the view pans automatically to keep the specified shape at a constant visual Y location. Only one

shape can be followed in Y direction. To unset shape following, set the shapeName to "".

shapeName

The shape to follow or "".

Returns

None.

GetAllShapesAt(posX,posY) OPERATION

Get an array of all the physics engine shapes (if any) at the input coordinates. The coordinates

for this method are the physics engine coordinates if panning is present.

posX

The X coordinate.

posY

The X coordinate.

SmallBasic Physics Extension

 Page 53

Returns

An array of shape names or "".

GetAngle(shapeName) OPERATION

Get the angle of rotation for the shape.

shapeName

The shape name.

Returns

The angle of rotation in degrees.

GetCollisions(shapeName) OPERATION

Get an array of all the shapes that the specified shape collided with during the last DoTimestep().

shapeName

The shape to check for collisions.

Returns

An array of all the shapes collided with (may be empty "").

GetContacts(posX,posY,distance) OPERATION

Get a list of shapes that collided within a distance of a specified contact point.

posX

The X coordinate of a contact position to check.

posY

The Y coordinate of a contact position to check.

distance

A maximum distance from the contact point for the contact.

Returns

An array of contacts, with each contact being an array of 2 shape names.

GetInertia(shapeName) OPERATION

Get the moment of inertia of a shape.

shapeName

The shape name.

Returns

The inertia of the shape.

GetMass(shapeName) OPERATION

Get the mass of a shape.

SmallBasic Physics Extension

 Page 54

shapeName

The shape name.

Returns

The mass of the shape.

GetPan() OPERATION

Get the current pan offset. See PanView, FollowShapeX(Y) and BoxShape. World coordinates =

screen coordinates + pan offset.

Returns

A 2 element array with the current pan offset.

GetPosition(shapeName) OPERATION

Get the centre of the shape coordinates.

shapeName

The shape name.

Returns

A 2 element array with the shape centre position.

GetRotation(shapeName) OPERATION

Get the shape rotation speed.

shapeName

The shape name.

Returns

The angular rotation speed degrees/s.

GetShapeAt(posX,posY) OPERATION

Get the shape (if any) at the input coordinates. The coordinates for this method are the screen

coordinates if panning is present.

posX

The X coordinate.

posY

The X coordinate.

Returns

The shape name at the input position or "".

GetTireInformation(shapeName) OPERATION

Get tire information, it includes:

 Skid (if this value exceeds the property AntiSkid, then the tire is skidding)

SmallBasic Physics Extension

 Page 55

 Crash (the value is the speed of the impact)

shapeName

The tire shape.

Returns

An array of information, indexed by the information name, e.g. "Skid".

GetTireProperties(shapeName) OPERATION

Get tire properties, they include:

 AntiSkid (higher value reduces skid)

 Drag (higher value increases forward/backward drag)

 Brake (higher value increases braking power)

 Straighten (higher value restores steering more quickly)

 BrakeStraighten (higher value restores steering more quickly while braking)

shapeName

The tire shape.

Returns

An array of properties, indexed by the property name, e.g. "AntiSkid".

GetVelocity(shapeName) OPERATION

Get the velocity of the shape.

shapeName

The shape name.

Returns

A 2 element array with the shape velocity.

GroupShapes(shape1,shape2) OPERATION

Solidly group two shapes to move together as one. Shape1 is added to shape2 to act as one

shape.

shape1

The first shape name.

shape2

The second shape name.

Returns

None.

Help() OPERATION

This function is just to display this help.

SmallBasic Physics Extension

 Page 56

The extension uses Box2D (http://box2d.org) as an engine and provides an interface between it

and the graphics capabilities of Small Basic.

Only shapes that are connected to the physics engine take part in the motion physics, for

example you may add normal shapes (e.g. a gun and not connect it to the physics engine).

Once a shape is connected to the engine, it is best to only interact with it through the methods

provided by the extension.

All positions are in the Small Basic GraphicsWindow pixels and refer to shape centres. Image and

text shapes are treated as rectangles, and ellipses as circles; there is also triangle and convex

polygon support, but not lines. Images may be treated as circles by setting the property

LoadImagesAsCircles to "True".

One issue that Box2D has difficulty with is small fast moving objects that can 'tunnel' through

other shapes without being deflected (see the SetBullet option).

Another problem is shapes of very different size and hence mass, especially large shapes when

they are connected together. It may be necessary to modify the density for these (the Anchor

options are an attempt to automate this a bit), otherwise the default density of 1 is good. Resist

the temptation to connect too many shapes together.

It may be possible to improve the stability of some 'difficult' models using the TimestepControl

settings, but the defaults look good for most cases.

Do not call the physics methods inside Small Basic event subroutines directly, rather set flags that

can be processed in a main game loop.

There are sample Small Basic programs and a Getting Started Guide that comes with the

extension dll - this is the best place to start.

Report bugs and problems to the Small Basic forum

(http://social.msdn.microsoft.com/Forums/en-US/smallbasic/threads), but first simplify your

Small Basic code to isolate the issue before providing a short 'runnable' code sample.

Returns

None.

MoveTire(shapeName,force) OPERATION

Move a tire shape, apply a forward or backward force.

shapeName

The tire shape to move.

force

The force to apply, positive is forward, negative is backward.

Returns

None.

http://box2d.org/
http://social.msdn.microsoft.com/Forums/en-US/smallbasic/threads

SmallBasic Physics Extension

 Page 57

PanView(panHorizontal,panVertical) OPERATION

Pan the camera view, including window boundaries.

panHorizontal

Pan in the horizontal direction (negative is left).

panVertical

Pan in the vertical direction (negative is up).

Returns

None.

RayCast(shapeName,angle,distance) OPERATION

Cast an invisible ray to detect the proximity of shapes.

shapeName

The shape to cast the ray from.

angle

The angle in degrees to check, this can also be an array of angles.

distance

A maximum distance to check.

Returns

An array of results, indexed by the shape name ("Wall" for a static obstacle) with a value equal to

its distance. The shapes are sorted to list them nearest first.

If an array of input angles is used, then only the nearest shape for each angle is returned and the

value is the angle, not the distance.

ReadJson(filename,scale,reverseY,stationary,offset,offsetY) OPERATION

Read in a json script compatible with R.U.B.E. and create a LDPhysics model. See

https://www.iforce2d.net/rube for more details.

fileName

The full path to the json file to read.

scale

Scale all shapes, default 1 (no scaling).

reverseY

Reverse the Y direction up to down ("True" or "False").

staiionary

Set all shapes to be initially at rest, joint motors are still enabled ("True" or "False").

offestX

Add an x coordinate offset to all shapes.

https://www.iforce2d.net/rube

SmallBasic Physics Extension

 Page 58

offsetY

Add a y coordinate offset to all shapes, especially useful when reverseY is set.

Returns

A text array containing the LDPhysics commands used to create the model.

RemoveChain(shapeName) OPERATION

Remove a chain.

shapeName

The chain name.

Returns

None.

RemoveFrozen() OPERATION

Removes all frozen shapes - outside the AABB for the engine.

Returns

None.

RemoveRope(shapeName) OPERATION

Remove a rope.

shapeName

The rope name.

Returns

None.

RemoveShape(shapeName) OPERATION

Remove a shape.

shapeName

The name of the shape.

Returns

None.

Reset() OPERATION

Reset (delete all physics engine attached shapes).

Returns

None.

SetAABB(minX,maxX,minY,maxY) OPERATION

The physics engine AABB (axis-aligned bounding box). The units are the engine units of m. A

Reset is required after setting. It is not recommended to change this.

SmallBasic Physics Extension

 Page 59

minX

The left coordinate of the universe (default -100).

maxX

The right coordinate of the universe (default 200).

minY

The top coordinate of the universe (default -100).

maxY

The bottom coordinate of the universe (default 200).

Returns

None.

SetAngle(shapeName, angle) OPERATION

Reset the angle of rotation for a shape.

shapeName

The shape name.

angle

The angle of rotation in degrees.

Returns

None.

SetBoundaries(left,right,top,bottom) OPERATION

Set solid boundaries (positioning a boundary outside the GraphicsWindow removes it).

left

The left bounday X value.

right

The right bounday X value.

top

The top bounday Y value.

bottom

The bottom (ground) boundary Y value.

Returns

None.

SetBullet(shapeName) OPERATION

Set a shape as a bullet. This prevents 'tunnelling' of fast moving small objects at the expense of

performance.

SmallBasic Physics Extension

 Page 60

shapeName

The shape name.

Returns

None.

SetDamping(shapeName,linear,angular) OPERATION

Set a damping factor for a shape (default 0).

shapeName

The shape to modify.

linear

Linear damping factor.

angular

Angular damping factor.

Returns

None.

SetForce(shapeName,forceX,forceY) OPERATION

Set a force to apply to a shape (Remember F = ma).

shapeName

The shape to modify.

forceX

X component of the force.

forceY

Y component of the force.

Returns

None.

SetGravity(gravX,gravY) OPERATION

Set the gravity direction and magnitude (default 0,100).

gravX

The X component of gravity.

gravY

The Y component of gravity.

Returns

None.

SmallBasic Physics Extension

 Page 61

SetGroup(shapeName,group,mask) OPERATION

Control which sprites interact (collide) with other shapes.

shapeName

The shape to modify.

group

The group that the current shape belongs to (default 0). This should be an integer between 0 and

7.

mask

An array of groups that this shape will collide with (default all groups).

Returns

None.

SetImpulse(shapeName,impulseX,impulseY) OPERATION

Set an impulse to a shape (a kick).

shapeName

The shape to modify.

impulseX

X component of the impulse.

impulseY

Y component of the impulse.

Returns

None.

SetJointMotor(jointName,speed,maxForce) OPERATION

Set a motor for selected joints (Line, Prismatic_H, Prismatic_V and Revolute).

jointName

The joint name.

speed

The desired motor speed.

maxForce

The maximum motor force (torque for Revolute). A zero value turns motor off.

Returns

None.

SetPosition(shapeName,posX,posY,angle) OPERATION

Reset shape position.

SmallBasic Physics Extension

 Page 62

shapeName

The shape to modify.

posX

X component shape centre.

posY

Y component shape centre.

angle

The angle of rotation in degrees.

Returns

None.

SetRotation(shapeName,rotation) OPERATION

Set shape rotation speed.

shapeName

The shape to modify.

rotation

The angular rotation speed degrees/s.

Returns

None.

SetShapeGravity(shapeName,gravX,gravY) OPERATION

Set the gravity direction and magnitude for an individual shape (default 0,100).

shapeName

The shape to modify.

gravX

The X component of gravity.

gravY

The Y component of gravity.

Returns

None.

SetTire(shapeName) OPERATION

Set an object to act as a drivable tire for a top down game. Usually gravity will be 0 and the

shape should already be added to the engine. The object should be initially positioned facing

forward up on the display.

shapeName

The shape to make a tire.

SmallBasic Physics Extension

 Page 63

Returns

None.

SetTireProperties(shapeName,properties) OPERATION

Set tire properties, they include:

 AntiSkid (higher value reduces skid)

 Drag (higher value increases forward/backward drag)

 Brake (higher value increases braking power)

 Straighten (higher value restores steering more quickly)

 BrakeStraighten (higher value restores steering more quickly while braking)

shapeName

The tire shape.

Returns

An array of one or more properties to set. The index is one of the properties (case sensitive) and

the value is the property value.

SetTorque(shapeName,torque) OPERATION

Set a torque to a shape (a rotational kick).

shapeName

The shape to modify.

torque

The torque to apply.

Returns

None.

SetVelocity(shapeName,velX,velY) OPERATION

Set the velocity of a shape.

shapeName

The shape to modify.

velX

X component of the velocity.

velY

Y component of the velocity.

Returns

None.

TimestepControl(timestep,velocityIterations,positionIterations) OPERATION

Modify default time-step control parameters - also can be set using individual parameters.

SmallBasic Physics Extension

 Page 64

timestep

Time-step (default 0.025).

velocityIterations

Velocity iterations (default 6).

positionIterations

Position iterations (default 2).

Returns

None.

TurnTire(shapeName,torque) OPERATION

Turn a tire shape, steer left or right.

shapeName

The tire shape to turn.

torque

The torque, rotation force to apply, positive is turn right, negative is turn left.

Returns

None.

ToggleMoving(shapeName) OPERATION

Toggle a moving shape to be fixed and vice-versa. This method also sets the rotation to be on or

off to match if it is moving or fixed.

shapeName

The shape name.

Returns

None.

ToggleRotation(shapeName) OPERATION

Toggle a shape to not rotate and vice-versa. This method toggles the rotation property for fixed

and moving shapes.

shapeName

The shape name.

Returns

None.

ToggleSensor(shapeName) OPERATION

Toggle a shape to act as a sensor and vice-versa. A sensor shape does not interact with other

shapes, but still provides collision data.

SmallBasic Physics Extension

 Page 65

shapeName

The shape name.

Returns

None.

UngroupShapes(shape1,shape2) OPERATION

Remove shape group pairing.

shape1

The first shape name.

shape2

The second shape name.

Returns

None.

UnsetBullet(shapeName) OPERATION

Unset a shape as a bullet. This reverts the shape to normal collision detection.

shapeName

The shape name.

Returns

None.

WakeAll() OPERATION

Wake all sleeping shapes - shapes sleep due to no applied forces or contacts. They wake

automatically on any contact or applied force, so this action is rarely required.

Returns

None.

WriteJson(fileName) OPERATION

Write out a json script compatible with R.U.B.E. from current LDPhysics model. See

https://www.iforce2d.net/rube for more details.

fileName

The full path to the json file to create.

Returns

None.

https://www.iforce2d.net/rube

